论文标题

近似和科学层次结构的广义硬度 - 确定AI中训练算法的边界

Generalised hardness of approximation and the SCI hierarchy -- On determining the boundaries of training algorithms in AI

论文作者

Gazdag, Luca Eva, Hansen, Anders C.

论文摘要

近似硬度(ha) - 假设p $ \ neq $ np的现象可以轻松地计算出$ε$ - approximation,以解决$ε>ε_0> 0 $的离散计算问题的解决方案,但是对于$ε<ε_0$,它突然变得可行,这是一种核心 - 是一种核心现象 - 是计算机上的核心现象。在本文中,我们研究了在计算数学基础上新发现的现象:近似的广义硬度(GHA) - 在精神上,它接近了计算机科学中的古典HA。但是,在许多情况下,GHA通常独立于PS. NP问题。因此,它需要我们在本文中启动的新数学框架。我们证明了迄今未发现的现象,即使用AI技术来训练最佳神经网络(NNS)时GHA发生。特别是,对于任何非零的线性问题,可能会发生以下相变的线性问题:可以证明存在用于解决该问题的最佳NN,但只能将它们计算为一定精度$ε_0> 0 $。低于近似阈值$ε_0$ - 不仅要棘手地计算NN - 无论计算能力如何,它都变得不可能,而且没有随机算法可以更好地解决问题,概率比1/2更好。在其他情况下,尽管存在稳定的最佳nn,但将其计算以下的任何尝试都将产生不稳定的NN。我们的结果使用并扩展了解决性复杂性指数(SCI)层次结构的当前数学框架,并促进了一个程序,用于检测整个计算数学和AI的GHA现象。

Hardness of approximation (HA) -- the phenomenon that, assuming P $\neq$ NP, one can easily compute an $ε$-approximation to the solution of a discrete computational problem for $ε> ε_0 > 0$, but for $ε< ε_0$ it suddenly becomes intractable -- is a core phenomenon in the foundations of computations that has transformed computer science. In this paper we study the newly discovered phenomenon in the foundations of computational mathematics: generalised hardness of approximation (GHA) -- which in spirit is close to classical HA in computer science. However, GHA is typically independent of the P vs. NP question in many cases. Thus, it requires a new mathematical framework that we initiate in this paper. We demonstrate the hitherto undiscovered phenomenon that GHA happens when using AI techniques in order to train optimal neural networks (NNs). In particular, for any non-zero underdetermined linear problem the following phase transition may occur: One can prove the existence of optimal NNs for solving the problem but they can only be computed to a certain accuracy $ε_0 > 0$. Below the approximation threshold $ε_0$ -- not only does it become intractable to compute the NN -- it becomes impossible regardless of computing power, and no randomised algorithm can solve the problem with probability better than 1/2. In other cases, despite the existence of a stable optimal NN, any attempts of computing it below the approximation threshold $ε_0$ will yield an unstable NN. Our results use and extend the current mathematical framework of the Solvability Complexity Index (SCI) hierarchy and facilitate a program for detecting the GHA phenomenon throughout computational mathematics and AI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源