论文标题
浅锥艾森斯坦系列的傅立叶扩展
Fourier expansion of light-cone Eisenstein series
论文作者
论文摘要
在这项工作中,我们为Eisenstein系列的傅立叶系数提供了一个明确的公式,该系数与作用于双曲线N+1空间的某些算术晶格相对应。结果,我们获得了这些Eisenstein系列的所有极点及其最高规范的位置的结果。我们使用此信息来获得有关在球体上计数合理点的新结果。
In this work we give an explicit formula for the Fourier coefficients of Eisenstein series corresponding to certain arithmetic lattices acting on hyperbolic n+1-space. As a consequence we obtain results on location of all poles of these Eisenstein series as well as their supremum norms. We use this information to get new results on counting rational points on spheres.