论文标题
旋转的浅水方程随着底部的阻力:分叉和由于动能后散射引起的生长
Rotating shallow water equations with bottom drag: bifurcations and growth due to kinetic energy backscatter
论文作者
论文摘要
具有F平面近似和非线性底部阻力的旋转浅水方程是中纬度地球物理流的典型模型,它通过简单的地形经历能量损失。由用于大规模地球物理流量的数值方案的动机,我们在整个空间上考虑了该模型,其水平动能反向散射源术语是由负粘度和稳定性稳定性使用恒定参数构建的。我们研究了它与线性和非平滑二次底部底部的相互作用,穿过相干流的存在。我们的结果强调,反向散射可能具有不希望的扩增和选择效果,从而产生了能量分布的障碍。我们发现,减少线性底部阻力会破坏琐碎的流动,并产生与地质平衡(GE)和惯性 - 重力波(IGWS)相关的非线性流动。 IGW是周期性的行进波,而GE是固定的,可以通过降低平面波进行研究。我们表明,对于各向同性的反向散射均同时和超级判断性,而对于各向异性的反向散射,主要分叉为GE。在所有情况下,非平滑二次底部阻力的存在都意味着异常的缩放定律。为了进行严格的分叉分析,必须由于缺乏平稳性而进行lyapunov-schmidt还原护理,并且由于高公认的术语在大波浪数下缺乏光谱差距。对于纯平滑的底部阻力,我们确定了在非线性方程内线性行为的明确流动:幅度可以稳定,任意,或成倍和不可约束地生长。我们通过数值计算说明结果,并在参数空间中呈现扩展分支。
The rotating shallow water equations with f-plane approximation and nonlinear bottom drag are a prototypical model for mid-latitude geophysical flow that experience energy loss through simple topography. Motivated by numerical schemes for large-scale geophysical flow, we consider this model on the whole space with horizontal kinetic energy backscatter source terms built from negative viscosity and stabilizing hyperviscosity with constant parameters. We study its interplay with linear and non-smooth quadratic bottom drag through the existence of coherent flows. Our results highlight that backscatter can have undesired amplification and selection effects, generating obstacles to energy distribution. We find that decreasing linear bottom drag destabilizes the trivial flow and generates nonlinear flows that can be associated with geostrophic equilibria (GE) and inertia-gravity waves (IGWs). The IGWs are periodic travelling waves, while the GE are stationary and can be studied by a plane wave reduction. We show that for isotropic backscatter both bifurcate simultaneously and supercritically, while for anisotropic backscatter the primary bifurcation are GE. In all cases presence of non-smooth quadratic bottom drag implies unusual scaling laws. For the rigorous bifurcation analysis by Lyapunov-Schmidt reduction care has to be taken due to this lack of smoothness and since the hyperviscous terms yield a lack of spectral gap at large wave numbers. For purely smooth bottom drag, we identify a class of explicit such flows that behave linearly within the nonlinear equations: amplitudes can be steady and arbitrary, or grow exponentially and unboundedly. We illustrate the results by numerical computations and present extended branches in parameter space.