论文标题

与图像提取的数据上的自我监督聚类,并带有深入的自组织地图

Self-Supervised Clustering on Image-Subtracted Data with Deep-Embedded Self-Organizing Map

论文作者

Mong, Y. -L., Ackley, K., Killestein, T. L., Galloway, D. K., Dyer, M., Cutter, R., Brown, M. J. I., Lyman, J., Ulaczyk, K., Steeghs, D., Dhillon, V., O'Brien, P., Ramsay, G., Noysena, K., Kotak, R., Breton, R., Nuttall, L., Palle, E., Pollacco, D., Thrane, E., Awiphan, S., Burhanudin, U., Chote, P., Chrimes, A., Daw, E., Duffy, C., Eyles-Ferris, R., Gompertz, B. P., Heikkila, T., Irawati, P., Kennedy, M., Levan, A., Littlefair, S., Makrygianni, L., Marsh, T., Sanchez, D. Mata, Mattila, S., Maund, J. R., McCormac, J., Mkrtichian, D., Mullaney, J., Rol, E., Sawangwit, U., Stanway, E., Starling, R., Strom, P., Tooke, S., Wiersema, K.

论文摘要

开发有效的自动分类器以将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为实际 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的 - 博格斯”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们最好的DESOM分类器显示出6.6%的检测率为6.6%,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了其他潜在用法及其局限性。

Developing an effective automatic classifier to separate genuine sources from artifacts is essential for transient follow-ups in wide-field optical surveys. The identification of transient detections from the subtraction artifacts after the image differencing process is a key step in such classifiers, known as real-bogus classification problem. We apply a self-supervised machine learning model, the deep-embedded self-organizing map (DESOM) to this "real-bogus" classification problem. DESOM combines an autoencoder and a self-organizing map to perform clustering in order to distinguish between real and bogus detections, based on their dimensionality-reduced representations. We use 32x32 normalized detection thumbnails as the input of DESOM. We demonstrate different model training approaches, and find that our best DESOM classifier shows a missed detection rate of 6.6% with a false positive rate of 1.5%. DESOM offers a more nuanced way to fine-tune the decision boundary identifying likely real detections when used in combination with other types of classifiers, for example built on neural networks or decision trees. We also discuss other potential usages of DESOM and its limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源