论文标题

迈向传感器融合的有效体系结构和算法

Towards Efficient Architecture and Algorithms for Sensor Fusion

论文作者

Wang, Zhendong, Zeng, Xiaoming, Song, Shuaiwen Leon, Hu, Yang

论文摘要

自动化车辆的安全性至关重要的是感知和决策延迟的准确性。根据这些严格的要求,未来的自动化汽车通常配备了多模式传感器,例如相机和激光镜头。采用传感器融合来提供驾驶场景的自信背景,以更好地决策。有希望的传感器融合技术是中间融合,结合了属于不同感应方式的中间层的特征表示。但是,实现准确性和延迟效率对于中间融合来说是挑战,这对于推动自动化应用至关重要。我们提出了A3Fusion,这是一种软件硬件系统,专门针对自适应,敏捷和一致性融合在驱动自动化方面。 A3Fusion通过提出适应性的多模式学习网络体系结构和潜伏感知的,敏捷的网络架构优化算法来提高语义细分精度,同时以推理延迟作为关键的权衡,从而提高了多个基于CNN的模式的中间融合,从而实现了高效率。此外,A3Fusion提出了一个基于FPGA的加速器,该加速器捕获了我们中间融合算法的独特数据流模式,同时还原整体计算开销。我们通过共同设计神经网络,算法和加速器体系结构来实现这些贡献。

The safety of an automated vehicle hinges crucially upon the accuracy of perception and decision-making latency. Under these stringent requirements, future automated cars are usually equipped with multi-modal sensors such as cameras and LiDARs. The sensor fusion is adopted to provide a confident context of driving scenarios for better decision-making. A promising sensor fusion technique is middle fusion that combines the feature representations from intermediate layers that belong to different sensing modalities. However, achieving both the accuracy and latency efficiency is challenging for middle fusion, which is critical for driving automation applications. We present A3Fusion, a software-hardware system specialized for an adaptive, agile, and aligned fusion in driving automation. A3Fusion achieves a high efficiency for the middle fusion of multiple CNN-based modalities by proposing an adaptive multi-modal learning network architecture and a latency-aware, agile network architecture optimization algorithm that enhances semantic segmentation accuracy while taking the inference latency as a key trade-off. In addition, A3Fusion proposes a FPGA-based accelerator that captures unique data flow patterns of our middle fusion algorithm while reducing the overall compute overheads. We enable these contributions by co-designing the neural network, algorithm, and the accelerator architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源