论文标题
$ t \ bar {t} $的相图 - 在球体上变形的杨米尔斯理论
The phase diagram of $T\bar{T}$-deformed Yang-Mills theory on the sphere
论文作者
论文摘要
我们研究了$ t \ bar {t} $的大型动力学 - 零属变形的二维阳米尔斯理论。自由能的1/$ n $扩展是通过利用相关的流程方程来获得的,并且该理论的完整相图均针对重新定性变形参数$τ$的两个符号得出。我们观察到由Instanton冷凝驱动的三阶相变,这是熟悉的Douglas-Kazakov跃迁的变形版,将弱耦合的弱耦合与强耦合相位。通过研究上述阶段,我们计算了扰动部门和泰勒弦弦扩展的变形。 $τ$中的非扰动校正将系统驱动到一个未探索的无序相,该相位通过新的关键线分隔,在三级临界点上切入了道格拉斯 - 卡扎科夫。相关的相变是由大$ n $鞍点的碰撞确定其二阶特征。
We study the large-$N$ dynamics of $T\bar{T}$-deformed two-dimensional Yang-Mills theory at genus zero. The 1/$N$-expansion of the free energy is obtained by exploiting the associated flow equation and the complete phase diagram of the theory is derived for both signs of the rescaled deformation parameter $τ$. We observe a third-order phase transition driven by instanton condensation, which is the deformed version of the familiar Douglas-Kazakov transition separating the weakly-coupled from the strongly-coupled phase. By studying said phases, we compute the deformation of both the perturbative sector and the Gross-Taylor string expansion. Nonperturbative corrections in $τ$ drive the system into an unexplored disordered phase separated by a novel critical line meeting tangentially the Douglas-Kazakov one at a tricritical point. The associated phase transition is induced by the collision of large-$N$ saddle points, determining its second-order character.