论文标题

通过多模式深度学习在手术任务期间认知工作量的识别

Identification of Cognitive Workload during Surgical Tasks with Multimodal Deep Learning

论文作者

Jin, Kaizhe, Rubio-Solis, Adrian, Naik, Ravi, Onyeogulu, Tochukwu, Islam, Amirul, Khan, Salman, Teeti, Izzeddin, Kinross, James, Leff, Daniel R, Cuzzolin, Fabio, Mylonas, George

论文摘要

手术室(OR)是一个动态且复杂的环境,由一个在高度带动环境中共同工作的多学科团队组成,以提供安全有效的患者护理。此外,外科医生经常接触多个心理和组织压力源,这可能会对他们的直接技术表现和长期健康造成负面影响。因此,许多因素可能有助于增加认知工作量(CWL),例如暂时压力,不熟悉的解剖学或OR中的干扰。在本文中,建议在四种不同的手术任务条件下对CWL的多模式识别提出了两种机器学习方法。首先,基于转移学习概念的模型用于确定外科医生是否经历了任何CWL。其次,卷积神经网络(CNN)使用此信息来识别与每个手术任务相关的不同程度的CWL。建议的多模式方法考虑了脑电图(EEG),功能近红外光谱(FNIRS)和眼瞳直径的相邻信号。信号的串联允许在时间(时间)和通道位置(空间)方面进行复杂的相关性。数据收集是由多感应的AI环境进行的,用于在伦敦帝国学院的Hamlyn Center开发的手术任务和角色优化平台(Maestro)。为了比较提出的方法的性能,已经实施了许多最先进的机器学习技术。测试表明,所提出的模型的精度为93%。

The operating room (OR) is a dynamic and complex environment consisting of a multidisciplinary team working together in a high take environment to provide safe and efficient patient care. Additionally, surgeons are frequently exposed to multiple psycho-organisational stressors that may cause negative repercussions on their immediate technical performance and long-term health. Many factors can therefore contribute to increasing the Cognitive Workload (CWL) such as temporal pressures, unfamiliar anatomy or distractions in the OR. In this paper, a cascade of two machine learning approaches is suggested for the multimodal recognition of CWL in four different surgical task conditions. Firstly, a model based on the concept of transfer learning is used to identify if a surgeon is experiencing any CWL. Secondly, a Convolutional Neural Network (CNN) uses this information to identify different degrees of CWL associated to each surgical task. The suggested multimodal approach considers adjacent signals from electroencephalogram (EEG), functional near-infrared spectroscopy (fNIRS) and eye pupil diameter. The concatenation of signals allows complex correlations in terms of time (temporal) and channel location (spatial). Data collection was performed by a Multi-sensing AI Environment for Surgical Task & Role Optimisation platform (MAESTRO) developed at the Hamlyn Centre, Imperial College London. To compare the performance of the proposed methodology, a number of state-of-art machine learning techniques have been implemented. The tests show that the proposed model has a precision of 93%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源