论文标题
无限期和双向近红外纳米晶体照相
Indefinite and Bidirectional Near Infrared Nanocrystal Photoswitching
论文作者
论文摘要
可以通过光学刺激驱动技术切换发光的材料,范围从超分辨率成像1-4,纳米光子学5和光学数据存储6-8到靶向药理学,光遗传学和化学反应性9。这些可拍摄的探针,包括有机荧光团和蛋白质,容易降解,并且通常需要光毒性剂量的紫外线(UV)或可见光。胶体无机纳米颗粒比现有的可拍摄材料具有显着的稳定性优势,但是尚未用纳米颗粒进行双向切换发射的能力,尤其是NIR光。在这里,我们介绍了雪崩纳米颗粒(ANPS)的2条,近红外(NIR)拍摄的照片,显示了使用NIR-I和NIR-II光谱区域中用于地下表面成像的Phototriggers对上转换发射的完全光学控制。采用单步摄影10-13和Photobrighting12,14-18,我们在环境或水性条件下,在没有可测量的光降解的情况下,在环境或水性条件下,单个纳米颗粒(> 1000个循环> 1000个循环)进行了无限期拍摄。通过建模和测量明亮和黑暗状态下单个ANP的光子雪崩特性,可以阐明照片处理机制的关键步骤。 ANP的无限,可逆的拍摄拍摄能够无限期地重写ANP的2D和3D多级光学模式,以及具有子Å定位上分辨率的光学纳米镜检查,使我们能够在紧密包装的簇中区分单个ANP。
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6-8, to targeted pharmacology, optogenetics, and chemical reactivity9. These photoswitchable probes, including organic fluorophores and proteins, are prone to photodegradation, and often require phototoxic doses of ultraviolet (UV) or visible light. Colloidal inorganic nanoparticles have significant stability advantages over existing photoswitchable materials, but the ability to switch emission bidirectionally, particularly with NIR light, has not been reported with nanoparticles. Here, we present 2-way, near-infrared (NIR) photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-18, we demonstrate indefinite photoswitching of individual nanoparticles (>1000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modeling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable 2D and 3D multi-level optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.