论文标题
上限,即使是渐近双曲线的共振次数
Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends
论文作者
论文摘要
我们证明了一个多项式上限在圆盘中的共振数量上,其半径倾向于无穷大,即使是渐近地夸张的双曲线歧管,具有实地分析末端。我们的分析还提供了Schwarzschild-De保姆的准频率数量的相似上限。
We prove a polynomial upper bound on the number of resonances in a disc whose radius tends to infinity for even asymptotically hyperbolic manifolds with real-analytic ends. Our analysis also gives a similar upper bound on the number of quasinormal frequencies for Schwarzschild-de Sitter spacetimes.