论文标题

用于自动检查的虚拟水下数据集

Virtual Underwater Datasets for Autonomous Inspections

论文作者

Polymenis, Ioannis, Haroutunian, Maryam, Norman, Rose, Trodden, David

论文摘要

在离岸行业以及科学界在水下行动方面的迅速发展,水下车辆变得更加复杂。值得注意的是,许多水下任务,包括对海底基础设施的评估,都是在自动水下车辆(AUV)的帮助下进行的。最近在人工智能(AI)方面取得了突破,尤其是深度学习(DL)模型和应用,这些模型和应用在各种领域都广泛使用,包括空中无人驾驶汽车,自动驾驶汽车导航和其他应用。但是,由于难以获得特定应用的水下数据集,它们在水下应用中并不普遍。从这个意义上讲,当前的研究利用DL领域的最新进步来构建从实验室环境中捕获的物品照片产生的定制数据集。通过将所收集的图像与包含水下环境的照片相结合,将生成的对抗网络(GAN)用于将实验室对象数据集转化为水下域。这些发现证明了创建这样的数据集的可行性,因为与现实世界的水下船体船体图像相比,所产生的图像与真实的水下环境非常相似。因此,水下环境的人工数据集可以克服因对实际水下图像的有限访问而引起的困难,并用于通过水下对象图像分类和检测来增强水下操作。

Underwater Vehicles have become more sophisticated, driven by the off-shore sector and the scientific community's rapid advancements in underwater operations. Notably, many underwater tasks, including the assessment of subsea infrastructure, are performed with the assistance of Autonomous Underwater Vehicles (AUVs). There have been recent breakthroughs in Artificial Intelligence (AI) and, notably, Deep Learning (DL) models and applications, which have widespread usage in a variety of fields, including aerial unmanned vehicles, autonomous car navigation, and other applications. However, they are not as prevalent in underwater applications due to the difficulty of obtaining underwater datasets for a specific application. In this sense, the current study utilises recent advancements in the area of DL to construct a bespoke dataset generated from photographs of items captured in a laboratory environment. Generative Adversarial Networks (GANs) were utilised to translate the laboratory object dataset into the underwater domain by combining the collected images with photographs containing the underwater environment. The findings demonstrated the feasibility of creating such a dataset, since the resulting images closely resembled the real underwater environment when compared with real-world underwater ship hull images. Therefore, the artificial datasets of the underwater environment can overcome the difficulties arising from the limited access to real-world underwater images and are used to enhance underwater operations through underwater object image classification and detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源