论文标题
流量预测和隐藏马尔可夫物联网模型的快速上行链路
Traffic Prediction and Fast Uplink for Hidden Markov IoT Models
论文作者
论文摘要
在这项工作中,我们为由二进制Markovian事件控制的物联网网络提供了一个新颖的流量预测和快速上行链路框架。首先,我们使用隐藏的马尔可夫模型(HMM)应用前向算法,以通过快速上行链路赠款将可用资源安排在具有最大似然激活概率的设备上。此外,我们将遗憾度量评估为评估预测性能的浪费传输插槽数量。接下来,我们制定一个公平优化的问题,以最大程度地减少信息的年龄,同时使遗憾尽可能降低。最后,我们提出了一种迭代算法,以在实时应用程序中估算模型超参数(激活概率),并应用建议的流量预测方案的在线学习版本。仿真结果表明,所提出的算法优于基线模型,例如时间分段多重访问(TDMA)和无拨款(GF)随机访问,以遗憾,系统使用效率和信息年龄。
In this work, we present a novel traffic prediction and fast uplink framework for IoT networks controlled by binary Markovian events. First, we apply the forward algorithm with hidden Markov models (HMM) in order to schedule the available resources to the devices with maximum likelihood activation probabilities via fast uplink grant. In addition, we evaluate the regret metric as the number of wasted transmission slots to evaluate the performance of the prediction. Next, we formulate a fairness optimization problem to minimize the age of information while keeping the regret as minimum as possible. Finally, we propose an iterative algorithm to estimate the model hyperparameters (activation probabilities) in a real-time application and apply an online-learning version of the proposed traffic prediction scheme. Simulation results show that the proposed algorithms outperform baseline models such as time division multiple access (TDMA) and grant-free (GF) random-access in terms of regret, the efficiency of system usage, and age of information.