论文标题
线元素之间的映射
Mapping Among Line Elements
论文作者
论文摘要
在本文中,我们重新审视了“矩阵riccati方程,kaluza-klein,Finsler空间和歧管之间的映射” [1]。我们将在广义二次的哈密顿人之间构建映射,并为非局部和广义的哈密顿人建造Calabi的Riemmannian线元素。作为一种应用,我们使用嵌入两个平坦歧管中的两个通用伪riemannian线元件的共形扁平形式,并获得了这两个歧管之间的映射的分析和精确溶液,以及相关矩阵Riccati方程的无限溶液。
In this paper, we revisit our paper "Matrix Riccati Equations, Kaluza-Klein, Finsler Spaces, and Mapping Among Manifolds"[1]. We will build mapping among generalized quadratic Hamiltonians and we construct Calabi's Riemmannian Line Elements for non-quadratic and generalized Hamiltonians. As an application, we use conformally flat forms of two general pseudo-Riemannian line elements embedded in two flat manifolds and obtain an analytical and exact solution of the mapping between these two manifolds as well as an infinite set of exact solutions of the associated matrix Riccati equation.