论文标题

基于计算机视觉的车辆跟踪作为RFID标签的互补和可扩展方法

Computer vision based vehicle tracking as a complementary and scalable approach to RFID tagging

论文作者

Gaur, Pranav Kant, Bhardwaj, Abhilash, Shete, Pritam, Laghate, Mohini, Sarode, Dinesh M

论文摘要

传入/发出车辆的日志记录是根本原因分析的关键信息,以打击各种敏感组织中的安全违规事件。 RFID标记会阻碍物流和技术方面的车辆跟踪解决方案的可扩展性。例如,要求标记的每个传入的车辆(部门或私人)是严重的约束,并且与RFID一起检测异常车辆运动的视频分析是不平凡的。我们利用计算机视觉算法的公开实现来使用有限状态机形式主义开发可解释的车辆跟踪算法。国家机器人从级联的对象检测和光学特征识别(OCR)模型中消耗了输入。我们评估了从系统部署站点中的285辆汽车的75个视频片段中提出的方法。我们观察到检测率受速度和车辆类型的影响最大。当车辆运动仅限于在检查点类似于RFID标记的检查点时,将达到最高的检测率。我们进一步分析了700个对Live DATA的车辆跟踪预测,并确定大多数车辆数量预测错误是由于无法辨认的文本,图像启动,文本遮挡和车辆数字中的录音机字母。为了进行系统部署和性能增强,我们希望我们正在进行的系统监控能够提供证据,以在安全检查站建立更高的车辆通知SOP,并推动部署的计算机视觉模型和国家机机的微调,以建立拟议的方法作为RFID-TAGGID-TAGGID的有希望的替代方法。

Logging of incoming/outgoing vehicles serves as a piece of critical information for root-cause analysis to combat security breach incidents in various sensitive organizations. RFID tagging hampers the scalability of vehicle tracking solutions on both logistics as well as technical fronts. For instance, requiring each incoming vehicle(departmental or private) to be RFID tagged is a severe constraint and coupling video analytics with RFID to detect abnormal vehicle movement is non-trivial. We leverage publicly available implementations of computer vision algorithms to develop an interpretable vehicle tracking algorithm using finite-state machine formalism. The state-machine consumes input from the cascaded object detection and optical character recognition(OCR) models for state transitions. We evaluated the proposed method on 75 video clips of 285 vehicles from our system deployment site. We observed that the detection rate is most affected by the speed and the type of vehicle. The highest detection rate is achieved when the vehicle movement is restricted to follow a movement restrictions(SOP) at the checkpoint similar to RFID tagging. We further analyzed 700 vehicle tracking predictions on live-data and identified that the majority of vehicle number prediction errors are due to illegible-text, image-blur, text occlusion and out-of-vocab letters in vehicle numbers. Towards system deployment and performance enhancement, we expect our ongoing system monitoring to provide evidences to establish a higher vehicle-throughput SOP at the security checkpoint as well as to drive the fine-tuning of the deployed computer-vision models and the state-machine to establish the proposed approach as a promising alternative to RFID-tagging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源