论文标题

最低riesz的能源问题与外部田地

Minimum Riesz energy problems with external fields

论文作者

Zorii, Natalia

论文摘要

本文在存在外部字段的情况下处理最低能量问题,相对于riesz内核$ | x-y |^{α-n} $,$ 0 <α<n $,on $ \ mathbb r^n $,$ n \ geqslant2 $。对于非常普遍的(不一定要较低的半连续性)外部字段$ f $,我们获得了$λ_{a,f}的存在必要和/或足够的条件$μ(\ Mathbb r^n)= 1 $,集中在一般(不一定关闭)$ a \ subset \ mathbb r^n $上。我们还提供了最小化器$λ_{a,f} $的各种替代性特征,分析$λ_{a,f} $的连续性和集合单调元素的修改后的robin常数,并描述了$λ_{a,f} $的$λ__的支持。因此,该理论的重大改进是由于作者最近开发的,基于强大拓扑与模糊拓扑之间的紧密相互作用以及内在的Balayage理论,这是由于一种新方法。

The paper deals with minimum energy problems in the presence of external fields with respect to the Riesz kernels $|x-y|^{α-n}$, $0<α<n$, on $\mathbb R^n$, $n\geqslant2$. For quite a general (not necessarily lower semicontinuous) external field $f$, we obtain necessary and/or sufficient conditions for the existence of $λ_{A,f}$ minimizing the Gauss functional \[\int|x-y|^{α-n}\,d(μ\otimesμ)(x,y)+2\int f\,dμ\] over all positive Radon measures $μ$ with $μ(\mathbb R^n)=1$, concentrated on quite a general (not necessarily closed) $A\subset\mathbb R^n$. We also provide various alternative characterizations of the minimizer $λ_{A,f}$, analyze the continuity of both $λ_{A,f}$ and the modified Robin constant for monotone families of sets, and give a description of the support of $λ_{A,f}$. The significant improvement of the theory in question thereby achieved is due to a new approach based on the close interaction between the strong and the vague topologies, as well as on the theory of inner balayage, developed recently by the author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源