论文标题

$ l^p $估算的希尔伯特变换和最大运算符与可变多项式关联

$L^p$ estimates for Hilbert transform and maximal operator associated to variable polynomial

论文作者

Wan, Renhui

论文摘要

我们沿一类可变的非灯多项式曲线$(p(t),u(x)t)$沿着可测量的$ u(x)$进行了调查的希尔伯特变换和最大运算符,并证明$ 1 <p <p <\ infty $。特别是,通过变量更改,这些均匀估计值等于曲线$(p(v(x)t),t)$的曲线估计值,其可测量$ V(x)$。为了获得所需的界限,我们充分利用时频技术,并为某些特殊单独的设置建立至关重要的$ε$提示估算。

We investigate the Hilbert transform and the maximal operator along a class of variable non-flat polynomial curves $(P(t),u(x)t)$ with measurable $u(x)$, and prove uniform $L^p$ estimates for $1<p<\infty$. In particular, via the change of variable, these uniform estimates are equal to the ones for the curves $(P(v(x)t),t)$ with measurable $v(x)$. To obtain the desired bound, we make full use of time-frequency techniques and establish a crucial $ε$-improving estimate for some special separate sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源