论文标题
在有限的图形的子结构排序的自动形态组上
On the Automorphism Group of the Substructure Ordering of Finite Directed Graphs
论文作者
论文摘要
我们研究有限的有针对性图的亚级订购的自动形态组。第二作者指出,它与768元素组$(\ Mathbb {Z} _2^4 \ times S_4)\rtimes_α\ Mathbb {z} _2 _2 $同构。尽管无法证明这一点,但我们通过证明自动形态群体在所讨论的POSET的前几个级别上表现出了预期的行为来巩固这一猜想。通过使用计算机计算,我们分析了前四个级别,持有3160个有向图。
We investigate the automorphism group of the substructure ordering of finite directed graphs. The second author conjectured that it is isomorphic to the 768-element group $(\mathbb{Z}_2^4 \times S_4)\rtimes_α \mathbb{Z}_2$. Though unable to prove it, we solidify this conjecture by showing that the automorphism group behaves as expected by the conjecture on the first few levels of the poset in question. With the use of computer calculation we analyze the first four levels holding 3160 directed graphs.