论文标题

带有学习框架的基于示例的图像着色

Exemplar-Based Image Colorization with A Learning Framework

论文作者

Xue, Zhenfeng, Yang, Jiandang, Ren, Jie, Liu, Yong

论文摘要

图像学习和着色是多媒体域中的热点。受到人类的学习能力的启发,在本文中,我们提出了一种具有学习框架的自动着色方法。该方法可以看作是基于典范和基于学习的方法的混合体,并且将色彩过程和学习过程解开,以便为相同的灰色图像生成各种颜色样式。基于示例的着色方法中的匹配过程可以被视为参数化函数,我们采用大量颜色图像作为训练样本来适合参数。在训练过程中,颜色图像是地面真相,我们通过根据匹配函数的参数来最大程度地减少误差来了解匹配过程的最佳参数。为了处理具有各种组合的图像,引入了全局功能,可用于将图像相对于它们的构图进行分类,然后分别学习每个图像类别的最佳匹配参数。更重要的是,基于空间一致性的后处理是设计从参考图像中提取的颜色信息,以删除匹配错误。进行了广泛的实验来验证该方法的有效性,并与最新的着色算法达到了可比的性能。

Image learning and colorization are hot spots in multimedia domain. Inspired by the learning capability of humans, in this paper, we propose an automatic colorization method with a learning framework. This method can be viewed as a hybrid of exemplar-based and learning-based method, and it decouples the colorization process and learning process so as to generate various color styles for the same gray image. The matching process in the exemplar-based colorization method can be regarded as a parameterized function, and we employ a large amount of color images as the training samples to fit the parameters. During the training process, the color images are the ground truths, and we learn the optimal parameters for the matching process by minimizing the errors in terms of the parameters for the matching function. To deal with images with various compositions, a global feature is introduced, which can be used to classify the images with respect to their compositions, and then learn the optimal matching parameters for each image category individually. What's more, a spatial consistency based post-processing is design to smooth the extracted color information from the reference image to remove matching errors. Extensive experiments are conducted to verify the effectiveness of the method, and it achieves comparable performance against the state-of-the-art colorization algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源