论文标题

与对比计划的非结构化环境中灵巧操作的双臂协作框架

A Dual-Arm Collaborative Framework for Dexterous Manipulation in Unstructured Environments with Contrastive Planning

论文作者

Huo, Shengzeng, Wang, Fangyuan, Hu, Luyin, Zhou, Peng, Zhu, Jihong, Wang, Hesheng, Navarro-Alarcon, David

论文摘要

机器人的大多数对象操纵策略都是基于以下假设:对象是刚性(即具有固定几何形状),并且目标的细节已完全指定(例如,确切的目标姿势)。但是,有许多任务涉及人类环境中的空间关系,这些条件可能难以满足,例如弯曲和将电缆放入未知容器中。为了在非结构化的环境中开发先进的机器人操纵功能,以避免这些假设,我们提出了一个新颖的长马框架,该框架利用了对比计划,以寻找有希望的协作行动。使用随机操作收集的仿真数据,我们以对比方式学习了一个嵌入模型,该模型从成功的体验中编码时空信息,从而通过在潜在空间中进行聚类来促进次目标计划。基于基于Kepoint对应的操作参数化,我们为双臂之间的协作设计了一个领导者追随者控制方案。我们政策的所有模型均经过模拟自动培训,可以直接传输到现实世界环境中。为了验证所提出的框架,我们对模拟和真实环境中的环境和可及性约束,对复杂场景进行了详细的实验研究。

Most object manipulation strategies for robots are based on the assumption that the object is rigid (i.e., with fixed geometry) and the goal's details have been fully specified (e.g., the exact target pose). However, there are many tasks that involve spatial relations in human environments where these conditions may be hard to satisfy, e.g., bending and placing a cable inside an unknown container. To develop advanced robotic manipulation capabilities in unstructured environments that avoid these assumptions, we propose a novel long-horizon framework that exploits contrastive planning in finding promising collaborative actions. Using simulation data collected by random actions, we learn an embedding model in a contrastive manner that encodes the spatio-temporal information from successful experiences, which facilitates the subgoal planning through clustering in the latent space. Based on the keypoint correspondence-based action parameterization, we design a leader-follower control scheme for the collaboration between dual arms. All models of our policy are automatically trained in simulation and can be directly transferred to real-world environments. To validate the proposed framework, we conduct a detailed experimental study on a complex scenario subject to environmental and reachability constraints in both simulation and real environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源