论文标题

部分可观测时空混沌系统的无模型预测

Constructing linear bicategories

论文作者

Blute, Richard, Kudzman-Blais, Rose, Niefield, Susan

论文摘要

引入了线性分布类别,以建模线性逻辑的张量/PAR片段,而无需诉诸使用否定。线性bicateGories是线性分布类别的生物构成版本。从本质上讲,线性植物学具有两种形式的组成,每种形式都决定了生物的结构,并且两个组合物通过线性分布相关。 虽然在单体拓扑领域是标准的,即量化值的类别是生物学的类别,但我们首先证明,如果量化是Girard量化的量子,我们会获得线性的bicategory。我们进一步表明,当$ q $ $ q $ a unitital量子的类别$ qrel $是Girard Quantaloid时,并且仅当$ Q ​​$是Girard的量化时。热带和北极的半度结构将其融合在一起,因此可以使用多个应用。更普遍地,我们定义LD-Quantales,它们是带有线性分布相关的两个量化结构的SUP局限器,并表明$ QREL $是线性的bicateGory,如果$ Q $是LD-Quantale。 然后,我们考虑了BicateGory理论的几种标准构造,并表明将这些升降到线性的生物学设置并产生线性生物游戏的新示例。特别是,我们考虑量化。我们首先定义了线性量化$ {\ cal q} $的概念,然后考虑线性$ {\ cal q} $ - 类别和$ {\ cal q} $中的线性和线性单元,其中$ {\ cal q} $是线性量词。每个线性量化都是线性的生物学。 我们还考虑了其​​物体是局部的生物学,1个细胞是双模型,而两个单元是双模型同构。事实证明,这种生物是我们所说的吉拉德·吉他(Girard Bicategory),这本质上是线性bicategories的封闭版本。

Linearly distributive categories were introduced to model the tensor/par fragment of linear logic, without resorting to the use of negation. Linear bicategories are the bicategorical version of linearly distributive categories. Essentially, a linear bicategory has two forms of composition, each determining the structure of a bicategory, and the two compositions are related by a linear distribution. While it is standard in the field of monoidal topology that the category of quantale-valued relations is a bicategory, we begin by showing that if the quantale is a Girard quantale, we obtain a linear bicategory. We further show that the category $QRel$ for $Q$ a unital quantale is a Girard quantaloid if and only if $Q$ is a Girard quantale. The tropical and arctic semiring structures fit together into a Girard quantale, so this construction is likely to have multiple applications. More generally, we define LD-quantales, which are sup-lattices with two quantale structures related by a linear distribution, and show that $QRel$ is a linear bicategory if $Q$ is an LD-quantale. We then consider several standard constructions from bicategory theory, and show that these lift to the linear bicategory setting and produce new examples of linear bicategories. In particular, we consider quantaloids. We first define the notion of a linear quantaloid ${\cal Q}$ and then consider linear ${\cal Q}$-categories and linear monads in ${\cal Q}$, where ${\cal Q}$ is a linear quantaloid. Every linear quantaloid is a linear bicategory. We also consider the bicategory whose objects are locales, 1-cells are bimodules and two-cells are bimodule homomorphisms. This bicategory turns out to be what we call a Girard bicategory, which are in essence a closed version of linear bicategories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源