论文标题
部分可观测时空混沌系统的无模型预测
Sample Complexity of an Adversarial Attack on UCB-based Best-arm Identification Policy
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work I study the problem of adversarial perturbations to rewards, in a Multi-armed bandit (MAB) setting. Specifically, I focus on an adversarial attack to a UCB type best-arm identification policy applied to a stochastic MAB. The UCB attack presented in [1] results in pulling a target arm K very often. I used the attack model of [1] to derive the sample complexity required for selecting target arm K as the best arm. I have proved that the stopping condition of UCB based best-arm identification algorithm given in [2], can be achieved by the target arm K in T rounds, where T depends only on the total number of arms and $σ$ parameter of $σ^2-$ sub-Gaussian random rewards of the arms.