论文标题
部分可观测时空混沌系统的无模型预测
Reliability and robustness of oscillations in some slow-fast chaotic systems
论文作者
论文摘要
生物系统的多种非线性模型产生了复杂的混乱行为,与生物稳态形成对比,这一观察结果表明,在面对外部或内部条件的情况下,许多生物系统证明了非常健壮的观察。由甲壳类中央模式发生器(CPG)中细胞活性微妙的动力学的动力,本文提出了对混乱的概念的完善,这些混乱概念在具有多个时间尺度的系统中调和了体内平衡和混乱。我们表明,在经历混乱的吸引力时显示出松弛循环的系统会产生混乱的动力学,这些动力在宏观时间尺度上是规则的,因此与生理功能一致。我们进一步表明,这种相对的规律性可能会通过混乱吸引子(例如危机)的全球分叉分解,除此之外,系统还可能在缓慢的时间表上产生不稳定的活动。我们在Chaotic Rulkov地图中详细分析了这些现象,这是一种经典的神经元模型,已知表现出各种混乱的尖峰模式。这使我们提出,缓慢的放松周期通过混乱的吸引力危机是一种强大的,是这种动力学之间过渡的坚固通用机制。我们在其他三个模型中进行数值验证:甲壳类CpG神经网络的简单模型,离散的立方映射和连续流。
A variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by the subtle dynamics of cell activity in a crustacean central pattern generator (CPG), this paper proposes a refinement of the notion of chaos that reconciles homeostasis and chaos in systems with multiple timescales. We show that systems displaying relaxation cycles while going through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales and are thus consistent with physiological function. We further show that this relative regularity may break down through global bifurcations of chaotic attractors such as crises, beyond which the system may also generate erratic activity at slow timescales. We analyze these phenomena in detail in the chaotic Rulkov map, a classical neuron model known to exhibit a variety of chaotic spike patterns. This leads us to propose that the passage of slow relaxation cycles through a chaotic attractor crisis is a robust, general mechanism for the transition between such dynamics. We validate this numerically in three other models: a simple model of the crustacean CPG neural network, a discrete cubic map, and a continuous flow.