论文标题

纵向磁电和无均匀Weyl半法的平面厅电导

Longitudinal magnetoconductance and the planar Hall conductance in inhomogeneous Weyl semimetals

论文作者

Ahmad, Azaz, Raman, Karthik V., Tewari, Sumanta, Sharma, G.

论文摘要

弹性变形(应变)夫妇以轴向磁场(手性仪表场)为魏尔半法的电子自由度,这又影响了它们的杂质占主导地位的扩散运输。在这里,我们研究了在菌株,Weyl锥倾斜和有限间隔散射的情况下研究纵向磁性(LMC),考虑到散射过程的动量依赖性(包括节点和内部电极)以及电荷保护。我们表明,应变诱导的手性量规场导致LMC的“强标记 - 反转”,其特征在于磁场抛物线相对于磁场的方向反转。另一方面,外部磁场会导致“强签名逆转”,仅用于足够强的间隔散射。当存在外部和手性仪表场时,我们会观察到强和弱的磁极磁场,在弱标志性逆转的情况下,磁性电导率的上升和下降取决于磁场的方向和/或手性仪表场的方向,并且与LMC Parabola的方向无关。证明这两个字段的组合可以在LMC相图中产生引人注目的特征,这是各种参数(例如倾斜,应变和间隔散射)的函数。我们还研究了菌株诱导的手性量规场对平面大厅电导的影响,并突出了其独特的特征,可以实验探测。

Elastic deformations (strain) couple to the electronic degrees of freedom in Weyl semimetals as an axial magnetic field (chiral gauge field), which in turn affects their impurity dominated diffusive transport. Here we study the longitudinal magnetoconductance (LMC) in the presence of strain, Weyl cone tilt, and finite intervalley scattering, taking into account the momentum dependence of the scattering processes (both internode and intranode), as well as charge conservation. We show that strain induced chiral gauge field results in `strong sign-reversal' of the LMC, which is characterized by the reversal of orientation of the magnetoconductance parabola with respect to the magnetic field. On the other hand, external magnetic field results in `strong sign-reversal', only for sufficiently strong intervalley scattering. When both external and chiral gauge fields are present, we observe both strong and weak sign-reversal, where in the case of weak sign-reversal, the rise and fall of magnetoconductivity depends on the direction of the magnetic field and/or the chiral gauge field, and is not correlated with the orientation of the LMC parabola. The combination of the two fields is shown to generate striking features in the LMC phase diagram as a function of various parameters such as tilt, strain, and intervalley scattering. We also study the effect of strain induced chiral gauge field on the planar Hall conductance and highlight its distinct features that can be probed experimentally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源