论文标题
Instantons,特殊周期和结一致性
Instantons, special cycles, and knot concordance
论文作者
论文摘要
我们介绍了一个框架,以使用等效的单数instanton浮子理论来定义结的一致性,并用Chern-Simons过滤定义结。已经证明,近年来使用Instantons定义的许多一致性不变性可以从我们的框架中恢复。这种关系使我们能够计算Kronheimer和Mrowka的$ S^\ sharp $ - invariant和分数理想的两桥结,等等。特别是,我们证明了$ s^\ sharp $的准添加属性,回答了锣的问题。我们还介绍了与Heegaard Floer $τ$ -Invariant的Oszváth和Szabó以及HOM的$ \ Varepsilon $ INVARIANT。我们为后两个不变的人和$ s^\ sharp $ invariant之间的精确关系提供了证据。 我们技术随之而来的一些新的拓扑应用如下。首先,我们产生了一系列的图案,其在一致性组上引起的卫星图具有其图像具有无限等级的特性,从而对Hedden和Pinzón-Caicedo的猜想提供了部分答案。其次,我们生产了无限的许多两桥结$ k $,这是代数协调组的扭转,但拥有$ k $上的正$ 1/n $ surgeries的财产,是同源性Cobordism群的线性独立集。最后,对于一个是准阳性而不是切片的结,我们证明结的任何一致性都承认了不可还原的$ su(2)$ - 在协和的基本组中表示。 尽管大部分文章都集中在使用具有无关的子午自由度条件的奇异intanton理论的结构上,但在任意全面参数的情况下,我们还为一致性不变式开发了一个类似的框架,并且在此设置中给出了某些应用。
We introduce a framework for defining concordance invariants of knots using equivariant singular instanton Floer theory with Chern-Simons filtration. It is demonstrated that many of the concordance invariants defined using instantons in recent years can be recovered from our framework. This relationship allows us to compute Kronheimer and Mrowka's $s^\sharp$-invariant and fractional ideal invariants for two-bridge knots, and more. In particular, we prove a quasi-additivity property of $s^\sharp$, answering a question of Gong. We also introduce invariants that are formally similar to the Heegaard Floer $τ$-invariant of Oszváth and Szabó and the $\varepsilon$-invariant of Hom. We provide evidence for a precise relationship between these latter two invariants and the $s^\sharp$-invariant. Some new topological applications that follow from our techniques are as follows. First, we produce a wide class of patterns whose induced satellite maps on the concordance group have the property that their images have infinite rank, giving a partial answer to a conjecture of Hedden and Pinzón-Caicedo. Second, we produce infinitely many two-bridge knots $K$ which are torsion in the algebraic concordance group and yet have the property that the set of positive $1/n$-surgeries on $K$ is a linearly independent set in the homology cobordism group. Finally, for a knot which is quasi-positive and not slice, we prove that any concordance from the knot admits an irreducible $SU(2)$-representation on the fundamental group of the concordance complement. While much of the paper focuses on constructions using singular instanton theory with the traceless meridional holonomy condition, we also develop an analogous framework for concordance invariants in the case of arbitrary holonomy parameters, and some applications are given in this setting.