论文标题
在动量空间上的协变动力
Covariant dynamics on the momentum space
论文作者
论文摘要
提出了对Schrödinger动力学和势能运算符的几何解释,从而使动力学的协变动量空间公式与具有动量空间结构变形的理论相关。在平坦的空间变形和欧几里得Snyder(球形动量空间)模型的背景下讨论了一些具体的例子。在此公式中,平坦动量空间变形的动力学变得琐碎,而Snyder模型的不同版本则是动态等效的。
A geometrical interpretation of Schrödinger's kinetic and potential energy operators is proposed, allowing for a covariant momentum space formulation of the dynamics that is relevant for the theories with the deformation of the momentum space structure. Some specific examples are discussed in the context of flat space deformations and the Euclidean Snyder (spherical momentum space) model. In this formulation the dynamics for the deformations of the flat momentum space becomes trivial, while different versions of the Snyder model turn out to be dynamically equivalent.