论文标题

压降,变形曲线和管子法律的目录,用于稳定状态下的牛顿流量的细长超弹性管

A catalog of pressure drop, deformation profile and tube laws for slender hyperelastic tubes conveying Newtonian flow at steady state

论文作者

Anand, Vishal

论文摘要

细长的管由经历大变形的高弹性材料组成,并在稳态下传达牛顿流体的惯性流是生物力学和生物启发技术中复杂系统的模型表示。在本文中,我们对该系统进行了系统的研究。该管的超弹性行为由五(5)个不同的本构定律建模:Neo Hookean,Mooney Rivlin,Fung,Gent和Ogden。为了调用有限弹性的原理,我们描绘了每个热弹性模型的管子的局部压力 - 变形关系。然后将管子的结构机械场与流体流场耦合,并使用润滑近似的原则来简化。然后,最终的流体结构相互作用问题引发了一系列有趣的结果,包括整个管子上的变形和压力曲线,以及用于五($ 5 $)超弹性模型的管子定律。分析这些结果,我们认为Neo Hookean和Mooney Rivlin的行为使我们与Fung和Gent的管子进行了交谈。后者显示出应变硬化行为,而前者表现出菌株变软。然后,敏感性分析强调了几何非线性在问题中的相对重要性。

Slender tubes constituted of hyperelastic materials undergoing large deformations and conveying inertialess flow of Newtonian fluids at steady state are a model representations of complex systems in both biomechanics and bio-inspired technology. In this paper, we undertake a systematic study of this system. The tube's hyperelastic behavior is modeled by five (5) different constitutive laws: neo Hookean, Mooney Rivlin, Fung, Gent and Ogden. Invoking the principles of finite elasticity, we delineate the local pressure - deformation relationship for the tube for each of the hyperelastic models. The structural mechanical field of the tube is then coupled with fluid flow field, which is simplified using the tenets of lubrication approximation. The resultant fluid-structure interaction problem then throws up a cohort of interesting results including the deformation and pressure profile across the tube, and tube laws for five ($5$) hyperelastic models. Analysing these results, we posit that the behavior of neo Hookean and Mooney Rivlin tubes us converse of Fung's and Gent's tubes; the latter show a strain hardening behavior whilst the former exhibit a strain softening one. A sensitivity analysis which underscores the relative importance of geometrical nonlinearity in the problem then follows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源