论文标题

TMS:基于端到端变压器的多模式网络,用于分割和生存预测

TMSS: An End-to-End Transformer-based Multimodal Network for Segmentation and Survival Prediction

论文作者

Saeed, Numan, Sobirov, Ikboljon, Majzoub, Roba Al, Yaqub, Mohammad

论文摘要

当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在他们的分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,以利用变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练和验证,用于从头部和颈部肿瘤分割的训练数据集上进行分割和预后任务,以及PET/CT图像挑战中的结果预测(Hecktor)。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。

When oncologists estimate cancer patient survival, they rely on multimodal data. Even though some multimodal deep learning methods have been proposed in the literature, the majority rely on having two or more independent networks that share knowledge at a later stage in the overall model. On the other hand, oncologists do not do this in their analysis but rather fuse the information in their brain from multiple sources such as medical images and patient history. This work proposes a deep learning method that mimics oncologists' analytical behavior when quantifying cancer and estimating patient survival. We propose TMSS, an end-to-end Transformer based Multimodal network for Segmentation and Survival prediction that leverages the superiority of transformers that lies in their abilities to handle different modalities. The model was trained and validated for segmentation and prognosis tasks on the training dataset from the HEad & NeCK TumOR segmentation and the outcome prediction in PET/CT images challenge (HECKTOR). We show that the proposed prognostic model significantly outperforms state-of-the-art methods with a concordance index of 0.763+/-0.14 while achieving a comparable dice score of 0.772+/-0.030 to a standalone segmentation model. The code is publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源