论文标题

句法方言分类在时空上的稳定性

Stability of Syntactic Dialect Classification Over Space and Time

论文作者

Dunn, Jonathan, Wong, Sidney

论文摘要

本文分析了基于句法表示的方言分类器在时间和时间上保持稳定的程度。虽然先前的工作表明,语法诱导和地理空间文本分类的结合产生了强大的方言模型,但我们不知道改变语法和人群变化对方言模型的影响是什么。本文构建了一个针对12种英语方言的测试集,该方言以每月的时间间隔覆盖三年,并在1,120个城市之间进行固定的空间分布。句法表示在基于用法的构造语法范式(CXG)中。随着时间的推移,每个方言的分类性能衰减率使我们能够识别经历句法变化的区域。方言区域内分类精度的分布使我们能够确定方言内部异质性语法的程度。本文的主要贡献是表明,对方言分类模型的严格评估可用于寻找空间上的变化和随着时间的变化。

This paper analyses the degree to which dialect classifiers based on syntactic representations remain stable over space and time. While previous work has shown that the combination of grammar induction and geospatial text classification produces robust dialect models, we do not know what influence both changing grammars and changing populations have on dialect models. This paper constructs a test set for 12 dialects of English that spans three years at monthly intervals with a fixed spatial distribution across 1,120 cities. Syntactic representations are formulated within the usage-based Construction Grammar paradigm (CxG). The decay rate of classification performance for each dialect over time allows us to identify regions undergoing syntactic change. And the distribution of classification accuracy within dialect regions allows us to identify the degree to which the grammar of a dialect is internally heterogeneous. The main contribution of this paper is to show that a rigorous evaluation of dialect classification models can be used to find both variation over space and change over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源