论文标题
类$ \ MATHCAL {O} _6行的轨道相对于$ \ Mathrm {pg}(3,q)$的扭曲立方
Orbits of the class $\mathcal{O}_6$ of lines external with respect to the twisted cubic in $\mathrm{PG}(3,q)$
论文作者
论文摘要
在投影空间$ \ mathrm {pg}(3,q)$中,我们考虑了扭曲立方体稳定器组下的线轨道。在文献中,$ \ mathrm {pg}(3,q)$的行被分配为类,每个类都是线轨道的结合。我们提出了一种获取名为$ \ mathcal {o} _6 $的类的轨道的方法,其完整的分类是一个开放的问题。对于所有偶数和奇数$ Q $,我们描述了$ \ Mathcal {O} _6 $及其稳定器组的轨道家族。该家族的轨道包括所有$ \ MATHCAL {O} _6 $ ORBITS的重要组成部分。
In the projective space $\mathrm{PG}(3,q)$, we consider orbits of lines under the stabilizer group of the twisted cubic. In the literature, lines of $\mathrm{PG}(3,q)$ are partitioned into classes, each of which is a union of line orbits. We propose an approach to obtain orbits of the class named $\mathcal{O}_6$, whose complete classification is an open problem. For all even and odd $q$ we describe a family of orbits of $\mathcal{O}_6$ and their stabilizer groups. The orbits of this family include an essential part of all $\mathcal{O}_6$ orbits.