论文标题

OpenMixup:开放混合工具箱和基准,用于视觉表示学习

OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning

论文作者

Li, Siyuan, Wang, Zedong, Liu, Zicheng, Tian, Juanxi, Wu, Di, Tan, Cheng, Jin, Weiyang, Li, Stan Z.

论文摘要

混合增强已成为一种广泛使用的技术,用于提高深神经网络(DNNS)的概括能力。但是,缺乏标准化的实施和基准阻碍了最近的进步,导致可重复性,不公平的比较和矛盾的见解。在本文中,我们介绍了OpenMixup,第一个混音增强代码库和视觉表示学习的基准。具体而言,我们从划痕训练18种代表性的混合基线,并在11个不同尺度和粒度的图像数据集中对它们进行严格评估,从细粒度的场景到复杂的非偶像场景。我们还开源的模块化代码库,包括一系列流行的视觉骨干,优化策略和分析工具包,它们不仅支持基准测试,而且还可以使更广泛的混合应用程序超出分类,例如自我监督的学习和回归任务。通过实验和实证分析,我们获得了关于混合性能效率折衷,概括和优化行为的观察和见解,从而确定了针对不同需求的首选选择。据我们所知,OpenMixup促进了最近的一些研究。我们认为,这项工作可以进一步提高可重现的混合增强研究,从而为社区未来的进步奠定了坚实的基础。源代码和用户文档可在\ url {https://github.com/westlake-ai/openmixup}上获得。

Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at \url{https://github.com/Westlake-AI/openmixup}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源