论文标题
以形式语言的信息内容
Information content in formal languages
论文作者
论文摘要
通过创建物理理论,考虑了带有变量的正式语言$ s $,并且语言元素之间的距离是由公式$ d(x,y)= \ ell(x \ nabla y) - \ ell(x)\ ell(x)\ wedge \ ell(y el(x)\ ell(y)$ \ ell(el ell(el)$ el y y y y y y y y y y y y United y United y United。实际上,我们主要考虑带有长度函数$ \ ell $的抽象Abelian IDEMPOTENT y MONOIDS $(s,\ nabla)$。一组长度功能可以投影到另一组长度函数,以使距离$ d $实际上是一个伪计,并且满足$ d(x \ nabla a,y \ nabla b)\ le d(x,y) + d(a,a,b)$。我们还提出了一个“签名度量”,以$ s $中的元素表达方式,以及在Abelian,具有长度功能或正式语言的Abelian,Idempotent Monoid之间的类似Banach-Mazur的距离。
Motivated by creating physical theories, formal languages $S$ with variables are considered and a kind of distance between elements of the languages is defined by the formula $d(x,y)= \ell(x \nabla y) - \ell(x) \wedge \ell(y)$, where $\ell$ is a length function and $x \nabla y$ means the united theory of $x$ and $y$. Actually we mainly consider abstract abelian idempotent monoids $(S,\nabla)$ provided with length functions $\ell$. The set of length functions can be projected to another set of length functions such that the distance $d$ is actually a pseudometric and satisfies $d(x\nabla a,y\nabla b) \le d(x,y) + d(a,b)$. We also propose a "signed measure" on the set of Boolean expressions of elements in $S$, and a Banach-Mazur-like distance between abelian, idempotent monoids with length functions, or formal languages.