论文标题
深度有损和剩余编码,用于无损和近乎无损的图像压缩
Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image Compression
论文作者
论文摘要
对于许多技术领域的专业用户,例如医学,遥感,精密工程和科学研究,无损和近乎无情的图像压缩至关重要。但是,尽管在基于学习的图像压缩方面迅速增长的研究兴趣,但没有发表的方法提供无损和近乎无情的模式。在本文中,我们提出了一个统一而强大的深层损失,剩余(DLPR)编码框架,以实现无损和近乎无情的图像压缩。在无损模式下,DLPR编码系统首先执行有损压缩,然后执行残差的无损编码。我们在VAE的方法中解决了关节损失和残留压缩问题,并添加了残差的自回归上下文模型以增强无损压缩性能。在近乎糟糕的模式下,我们量化了原始残差以满足给定的$ \ ell_ \ infty $错误绑定,并提出了一种可扩展的近乎无情的压缩方案,该方案适用于可变的$ \ ell_ \ infty $界限,而不是训练多个网络。为了加快DLPR编码的速度,我们通过新颖的编码环境设计提高了算法并行化的程度,并以自适应残留间隔加速了熵编码。实验结果表明,DLPR编码系统以竞争性的编码速度实现了最先进的无损和近乎损失的图像压缩性能。
Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes. In this paper, we propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression. In the lossless mode, the DLPR coding system first performs lossy compression and then lossless coding of residuals. We solve the joint lossy and residual compression problem in the approach of VAEs, and add autoregressive context modeling of the residuals to enhance lossless compression performance. In the near-lossless mode, we quantize the original residuals to satisfy a given $\ell_\infty$ error bound, and propose a scalable near-lossless compression scheme that works for variable $\ell_\infty$ bounds instead of training multiple networks. To expedite the DLPR coding, we increase the degree of algorithm parallelization by a novel design of coding context, and accelerate the entropy coding with adaptive residual interval. Experimental results demonstrate that the DLPR coding system achieves both the state-of-the-art lossless and near-lossless image compression performance with competitive coding speed.