论文标题
Gromov-Hausdorff近似
Multi-query Robotic Manipulator Task Sequencing with Gromov-Hausdorff Approximations
论文作者
论文摘要
机器人操纵器应用程序通常需要有效的在线运动计划。完成多个任务时,序列顺序和目标配置的选择可能会对计划性能产生巨大影响。这被称为机器人任务测序问题(RTSP)。现有的通用RTSP算法容易产生质量较差的解决方案或在可用计算时间受到限制时完全失败。我们提出了一种新的多Query任务测序方法,旨在在半结构化环境中使用静态和非静态障碍物组合。我们的方法有意将工作空间的一般性换成计划效率。给定一个具有静态障碍物的用户定义的任务空间,我们计算子空间分解。关键的想法是建立称为$ε$ -Gromov-Hausdorff近似值的近似等异构体,这些近似值识别在任务和配置空间中彼此接近的点。重要的是,我们证明在这些子空间内路径的长度上可以保证有限的次优性。这些边界关系进一步暗示可以平稳地串联在同一子空间内的路径,我们表明这对于确定有效的任务序列很有用。我们通过在复杂的模拟环境中使用几种运动学配置来评估我们的方法,与基线相比,最大3倍的运动计划和最大轨迹混蛋的最大最大轨迹更低。
Robotic manipulator applications often require efficient online motion planning. When completing multiple tasks, sequence order and choice of goal configuration can have a drastic impact on planning performance. This is well known as the robot task sequencing problem (RTSP). Existing general-purpose RTSP algorithms are susceptible to producing poor-quality solutions or failing entirely when available computation time is restricted. We propose a new multi-query task sequencing method designed to operate in semi-structured environments with a combination of static and non-static obstacles. Our method intentionally trades off workspace generality for planning efficiency. Given a user-defined task space with static obstacles, we compute a subspace decomposition. The key idea is to establish approximate isometries known as $ε$-Gromov-Hausdorff approximations that identify points that are close to one another in both task and configuration space. Importantly, we prove bounded suboptimality guarantees on the lengths of paths within these subspaces. These bounding relations further imply that paths within the same subspace can be smoothly concatenated, which we show is useful for determining efficient task sequences. We evaluate our method with several kinematic configurations in a complex simulated environment, achieving up to 3x faster motion planning and 5x lower maximum trajectory jerk compared to baselines.