论文标题

galvanotaxis的物理限制

Physical limits on galvanotaxis

论文作者

Nwogbaga, Ifunanya, Kim, A Hyun, Camley, Brian A.

论文摘要

真核细胞可以通过“ galvanotaxis”对电场响应电场而偏振和迁移,这有助于伤口愈合。实验证据表明,细胞通过分子在细胞表面上通过电泳和电肿瘤重新分布的电场感知电场,尽管尚未最终确定感应物种。我们开发了一个模型,该模型可以使用最大似然估计来连接传感器重新分布和galvanotaxis。我们的模型预测了旋转方向性如何取决于场强的单个通用曲线。我们可以在角膜细胞,神经crest细胞和粒细胞中对galvanotaxis的测量结果崩溃,这表明由于传感器的有限数量而引起的随机性可能会限制镀锌精度。我们发现细胞可以通过几个(〜100)高极化的传感器或许多(〜10,000)传感器实现实验观察到的方向,而整个细胞的浓度变化约为6-10%。我们还通过传感器的重新分布来确定Galvanotaxis的其他签名,包括通过快速开关场控制细胞的准确性和差异之间的权衡。我们的方法表明,分子尺度的噪声物理学如何限制细胞尺度的galvanotaxis,对传感器特性提供重要的约束,并允许新的测试确定galvanotaxis上的特定分子。

Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (~100) highly-polarized sensors, or many (~10,000) sensors with a ~6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties, and allowing for new tests to determine the specific molecules underlying galvanotaxis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源