论文标题
用无质量电子的Vlasov-Poisson系统的圆环上的Landau阻尼
Landau damping on the torus for the Vlasov-Poisson system with massless electrons
论文作者
论文摘要
本文研究了带有无质量电子(VPME)的Vlasov-Poisson系统的圆环$ \ mathbb {t}^d $上的非线性Landau阻尼。我们考虑使用分析或Gevrey($γ> 1/3 $)的初始数据的解决方案,接近满足Penrose稳定性条件的同质平衡。我们表明,对于此类溶液,随着时间的流逝,相应的密度和力场衰减呈指数速度。这项工作将vlasov-Poisson在圆环上的结果扩展到离子的情况,更普遍地扩展到任意分析性非线性耦合。
This paper studies the nonlinear Landau damping on the torus $\mathbb{T}^d$ for the Vlasov-Poisson system with massless electrons (VPME). We consider solutions with analytic or Gevrey ($γ> 1/3$) initial data, close to a homogeneous equilibrium satisfying a Penrose stability condition. We show that for such solutions, the corresponding density and force field decay exponentially fast as time goes to infinity. This work extends the results for Vlasov-Poisson on the torus to the case of ions and, more generally, to arbitrary analytic nonlinear couplings.