论文标题

用于玻璃检测的大型场景学习特征学习

Large-Field Contextual Feature Learning for Glass Detection

论文作者

Mei, Haiyang, Yang, Xin, Yu, Letian, Zhang, Qiang, Wei, Xiaopeng, Lau, Rynson W. H.

论文摘要

玻璃在我们的日常生活中非常普遍。现有的计算机视觉系统忽略了它,因此可能会产生严重的后果,例如,机器人可能会坠入玻璃墙。但是,感知玻璃的存在并不简单。关键的挑战是,任意物体/场景可以出现在玻璃后面。在本文中,我们提出了一个重要的问题,即从单个RGB图像中检测玻璃表面。为了解决这个问题,我们构建了第一个大型玻璃检测数据集(GDD),并提出了一个新型的玻璃检测网络,称为GDNET-B,该网络通过新型的大型上下文特征集成(LCFI)模块探索了大型视野中的丰富上下文提示,并将高级和低级边界与边界功能组合(bfe)(bfe)(bfe)。广泛的实验表明,我们的GDNET-B在GDD测试集内外的图像上实现了满足玻璃检测结果。我们通过将其应用于其他视觉任务(包括镜像分割和显着对象检测)来进一步验证我们提出的GDNET-B的有效性和概括能力。最后,我们显示了玻璃检测的潜在应用,并讨论了可能的未来研究方向。

Glass is very common in our daily life. Existing computer vision systems neglect it and thus may have severe consequences, e.g., a robot may crash into a glass wall. However, sensing the presence of glass is not straightforward. The key challenge is that arbitrary objects/scenes can appear behind the glass. In this paper, we propose an important problem of detecting glass surfaces from a single RGB image. To address this problem, we construct the first large-scale glass detection dataset (GDD) and propose a novel glass detection network, called GDNet-B, which explores abundant contextual cues in a large field-of-view via a novel large-field contextual feature integration (LCFI) module and integrates both high-level and low-level boundary features with a boundary feature enhancement (BFE) module. Extensive experiments demonstrate that our GDNet-B achieves satisfying glass detection results on the images within and beyond the GDD testing set. We further validate the effectiveness and generalization capability of our proposed GDNet-B by applying it to other vision tasks, including mirror segmentation and salient object detection. Finally, we show the potential applications of glass detection and discuss possible future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源