论文标题

在通用线性组上随机行走系数的中等偏差和局部极限定理

Moderate deviations and local limit theorems for the coefficients of random walks on the general linear group

论文作者

Xiao, Hui, Grama, Ion, Liu, Quansheng

论文摘要

考虑随机步行$ g_n:= g_n \ ldots g_1 $,$ n \ geq 1 $,其中$(g_n)_ {n \ geq 1} $是一系列独立且相同分布的随机元素,该元素与law $μ$ $ $ $ $ $ $ $ $ {在$μ$的适当条件下,我们建立了cramér型中等偏差扩展和本地限制定理,其系数$ \ langle f,g_n v \ rangle $,其中$ v \ in v $ in v $ and $ f \ in v^*$。我们的方法是基于马尔可夫链$ g_n \!\ cdot \!的不变度度量的Hölder规律性。 X = \ Mathbb r g_n V $在$ V $的投影空间上,起点$ x = \ Mathbb r V $,在更改的度量下。

Consider the random walk $G_n : = g_n \ldots g_1$, $n \geq 1$, where $(g_n)_{n\geq 1}$ is a sequence of independent and identically distributed random elements with law $μ$ on the general linear group ${\rm GL}(V)$ with $V=\mathbb R^d$. Under suitable conditions on $μ$, we establish Cramér type moderate deviation expansions and local limit theorems with moderate deviations for the coefficients $\langle f, G_n v \rangle$, where $v \in V$ and $f \in V^*$. Our approach is based on the Hölder regularity of the invariant measure of the Markov chain $G_n \!\cdot \! x = \mathbb R G_n v$ on the projective space of $V$ with the starting point $x = \mathbb R v$, under the changed measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源