论文标题

在Marcinkiewicz-Zygmund不平等和$ a_p $ - $ l $ shape arcs

On Marcinkiewicz-Zygmund inequalities and $A_p$-weights for $L$-shape arcs

论文作者

Chui, Charles K., Zhong, Lefan

论文摘要

令$γ$为$ l $形状弧,由2行段组成,与复杂$ z $ -plane $ \ cc $中的$π$相遇的角度不同。本文是为了研究$ \ {z__ {n,k} =ψ(e^{i(2kπ+θ)/(n+ 1)})$ $ \ {z__ {n,k} =ψ(z__ {n,k} =ψ(对于$θ$)的任何选择。在这方面,我们回想起[-1,1]间隔,fejér点$ \ {z_ {z_ {n,k} =ψ^**(e^{i(2k+1)π/(n+1)} \} $与Chebyshev的点同一致,并且最常用的点是Nagrane nodols nodol and polynol。另一方面,数值实验表明,对于典型的开放$ l $ -l $ shape $γ$,lebesgue常数倾向于以$ o((log(log(n))^2)$为$ o((log(n))$),作为多项式$ n $,而$ a_ {p} $ - a_ {p} $ a g}不要从[-1,1]转移到真正的$ L $形状弧。进一步的数值实验还表明,Marcinkiewicz-Zygmund的最小上限对于规范的Lagrange interpolation interpolation多项式为$ \ {z_ {z_ {n,k} \} $似乎以$ n^β$的速率增长,对于$ n^β$,对于某些$ bef> 0 $ phe $ phy $ p> $ p> 1 $ p> 1 $ p> 1 $ p> 1 $ p> 1 $ p> 1 $ p。

Let $Γ$ be an $L$-shape arc consisting of 2 line segments that meet at an angle different from $π$ in the complex $z$-plane $\CC$. This paper is to investigate the behavior of the polynomial interpolants at the Fejér points, defined by $\{z_{n,k} = ψ(e^{i(2kπ+ θ)/(n+1)})\}$ for any choice of $θ$. In this regard, we recall that for the interval [-1, 1], the Fejér points $\{z_{n,k} = ψ^*(e^{i(2k+1)π/(n+1)})\}$ agree with the Chebyshev points and that the Chebyshev points are most commonly used as nodes for Lagrange polynomial interpolation. On the other hand, numerical experimentation demonstrates that for a typical open $L$-shape arc $Γ$, the Lebesgue constants tend to $\infty$ at the rate of $O((log(n))^2)$, as the polynomial degree $n$ increases, while the $A_{p}$-weight conditions for the Fejér points $\{z_{n,k}\}$ do not carry over from [-1, 1] to a truly $L$-shape arc. Further numerical experiments also demonstrate that the least upper bounds of the Marcinkiewicz-Zygmund inequalities for the canonical Lagrange interpolation polynomials at $\{z_{n,k}\}$ seem to grow at the rate of $n^β$, for some $β>0$ that depends on $p >1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源