论文标题

通过分层分类的分布数据的细粒度推断

Fine-grain Inference on Out-of-Distribution Data with Hierarchical Classification

论文作者

Linderman, Randolph, Zhang, Jingyang, Inkawhich, Nathan, Li, Hai, Chen, Yiran

论文摘要

即使面对分布式(OOD)样本,也必须信任机器学习方法在现实世界环境中做出适当的决定。当前的许多方法只是旨在检测OOD示例并在给出未识别的输入时提醒用户。但是,当OOD样本与训练数据显着重叠时,二进制异常检测是无法解释或解释的,并且很少向用户提供信息。我们提出了一个新的OOD检测模型,随着输入变得更加模棱两可,在不同水平的粒度上进行预测,模型预测变得更加粗糙,更保守。考虑一个遇到未知鸟类和汽车的动物分类器。两种情况都是OOD,但是如果分类器认识到其对特定物种的不确定性太大并预测鸟类而不是将其视为OOD,则用户获得了更多信息。此外,我们诊断了分类器在层次结构的每个级别的性能,以改善模型预测的解释性和解释性。我们证明了分层分类器对细粒和粗粒的OOD任务的有效性。

Machine learning methods must be trusted to make appropriate decisions in real-world environments, even when faced with out-of-distribution (OOD) samples. Many current approaches simply aim to detect OOD examples and alert the user when an unrecognized input is given. However, when the OOD sample significantly overlaps with the training data, a binary anomaly detection is not interpretable or explainable, and provides little information to the user. We propose a new model for OOD detection that makes predictions at varying levels of granularity as the inputs become more ambiguous, the model predictions become coarser and more conservative. Consider an animal classifier that encounters an unknown bird species and a car. Both cases are OOD, but the user gains more information if the classifier recognizes that its uncertainty over the particular species is too large and predicts bird instead of detecting it as OOD. Furthermore, we diagnose the classifiers performance at each level of the hierarchy improving the explainability and interpretability of the models predictions. We demonstrate the effectiveness of hierarchical classifiers for both fine- and coarse-grained OOD tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源