论文标题

TGFT中的相变:Lorentzian量子几何模型的Landau-Ginzburg分析

Phase transitions in TGFT: a Landau-Ginzburg analysis of Lorentzian quantum geometric models

论文作者

Marchetti, Luca, Oriti, Daniele, Pithis, Andreas G. A., Thürigen, Johannes

论文摘要

在量子重力的紧张群体场理论(TGFT)方法中,该理论的基本量子对应于几何的离散构件。预计他们的集体动力学通过涉及相变的过程在粗粒度水平上产生连续时空。在这项工作中,我们首次展示了如何使用Landau-Ginzburg平均场理论来实现现实TGFT模型的相变。更确切地说,我们考虑由Spacelike Tetrahedra形成的4维Lorentzian三角形的模型,其量子几何形状是在非compact组$ \ MATHRM {SLRM {Slrm {SL}(2,2,\ Mathbb {C})$和对象和简单级别上以非分离的自由度编码的。此外,我们还包括$ \ mathbb {r} $ - 有价值的变量,这些变量可以解释为通常用作物质参考框架的离散标量字段。我们应用了金茨堡的标准发现,即在非局部相关长度下,无局部相关性的不变平均场真空周围的波动仍然很小。这项工作代表了了解量子重力的引人注目的TGFT模型中的相变的第一个关键步骤,并通过功能重新分配组技术为更完整的分析铺平了道路。此外,它支持在平均场近似情况下从TGFTS中提取有效的宇宙学动力学。

In the tensorial group field theory (TGFT) approach to quantum gravity, the basic quanta of the theory correspond to discrete building blocks of geometry. It is expected that their collective dynamics gives rise to continuum spacetime at a coarse grained level, via a process involving a phase transition. In this work we show for the first time how phase transitions for realistic TGFT models can be realized using Landau-Ginzburg mean-field theory. More precisely, we consider models generating 4-dimensional Lorentzian triangulations formed by spacelike tetrahedra whose quantum geometry is encoded in non-local degrees of freedom on the non-compact group $\mathrm{SL}(2,\mathbb{C})$ and subject to gauge and simplicity constraints. Further we include $\mathbb{R}$-valued variables which may be interpreted as discretized scalar fields typically employed as a matter reference frame. We apply the Ginzburg criterion finding that fluctuations around the non-vanishing mean-field vacuum remain small at large correlation lengths regardless of the combinatorics of the non-local interaction validating the mean-field theory description of the phase transition. This work represents a first crucial step to understand phase transitions in compelling TGFT models for quantum gravity and paves the way for a more complete analysis via functional renormalization group techniques. Moreover, it supports the recent extraction of effective cosmological dynamics from TGFTs in the context of a mean-field approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源