论文标题
在与多项式分布相关的某种类别的拟合优点测试的渐近特性上
On the Asymptotic Properties of a Certain Class of Goodness-of-Fit Tests Associated with Multinomial Distributions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The object of study is the problem of testing for uniformity of the multinomial distribution. We consider tests based on symmetric statistics, defined as the sum of some function of cell-frequencies. Mainly, attention is focused on the class of power divergence statistics, in particular, on the chi-square and log-likelihood ratio statistics. The main issue of the article is to study the asymptotic properties of tests at the concept of an intermediate setting in terms of so called -intermediate asymptotic efficiency due to Ivchenko and Mirakhmedov (1995), when the asymptotic power of tests are bounded away from zero and one, while sequences of alternatives converge to the hypothesis, but not too fast.