论文标题
部分可观测时空混沌系统的无模型预测
Diverse coherence-resonance chimeras in coupled type-I excitable systems
论文作者
论文摘要
在[Phys。莱特牧师。 117,014102(2016)],它结合了在II型激发系统网络中存在噪声的情况下相干共振和经典嵌合体的效果。但是,尚未观察到I型兴奋单元网络中的同样。在本文中,我们首次报告了耦合的I型兴奋性系统中相干谐波嵌合体的发生。我们考虑了I型兴奋性的范式模型,即Saddle节点无限周期模型,并表明相干 - 谐振嵌合体出现在最佳的噪声强度范围内。此外,我们发现了一种独特的嵌合体模式,该图案是经典嵌合体和相干 - 共振的嵌合体的混合物。我们使用定量措施支持我们的结果,并将其映射在参数空间中。这项研究表明,一致性的嵌合体是一种通用的嵌合体模式,因此它加深了我们对噪声在耦合激发系统中的作用的理解。
Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)], which combines the effect of coherence resonance and classical chimeras in the presence of noise in a network of type-II excitable systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper, for the first time, we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider a paradigmatic model of type-I excitability, namely the saddle-node infinite period model and show that the coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our results using quantitative measures and map them in parameter space. This study reveals that the coherence-resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled excitable systems.