论文标题
部分可观测时空混沌系统的无模型预测
Modelling Patient Trajectories Using Multimodal Information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Electronic Health Records (EHRs) aggregate diverse information at the patient level, holding a trajectory representative of the evolution of the patient health status throughout time. Although this information provides context and can be leveraged by physicians to monitor patient health and make more accurate prognoses/diagnoses, patient records can contain information from very long time spans, which combined with the rapid generation rate of medical data makes clinical decision making more complex. Patient trajectory modelling can assist by exploring existing information in a scalable manner, and can contribute in augmenting health care quality by fostering preventive medicine practices. We propose a solution to model patient trajectories that combines different types of information and considers the temporal aspect of clinical data. This solution leverages two different architectures: one supporting flexible sets of input features, to convert patient admissions into dense representations; and a second exploring extracted admission representations in a recurrent-based architecture, where patient trajectories are processed in sub-sequences using a sliding window mechanism. The developed solution was evaluated on two different clinical outcomes, unexpected patient readmission and disease progression, using the publicly available MIMIC-III clinical database. The results obtained demonstrate the potential of the first architecture to model readmission and diagnoses prediction using single patient admissions. While information from clinical text did not show the discriminative power observed in other existing works, this may be explained by the need to fine-tune the clinicalBERT model. Finally, we demonstrate the potential of the sequence-based architecture using a sliding window mechanism to represent the input data, attaining comparable performances to other existing solutions.