论文标题

在有限尺寸的扁平托里和Gabor框架上进行的时频分析

Time-frequency analysis on flat tori and Gabor frames in finite dimensions

论文作者

Abreu, Luis Daniel, Balazs, Peter, Holighaus, Nicki, Luef, Franz, Speckbacher, Michael

论文摘要

我们为短时傅立叶变换(stft)提供了希尔伯特空间理论的基础,其中平坦的tori \ begin {equation*} \ mathbb {t} _ {n}^2 = \ m马比布{r}^2/(r}^2/(\ mathbb {z}} \ end {等式*}充当相位空间。我们在双$ s_0'(\ Mathbb {r})$ s_0'(\ mathbbb {r})$ feichtinger代数$ s_0(\ mathbb {r})$上定期进行分布的定期时间和频率的$ n $二维子空间$ s_ {n} $。为了构建Hilbert Space $ S_ {N} $,我们将合适的双分期运算符应用于$ S_0(\ Mathbb {r})$。在$ s_ {n} $上,将STFT应用于$ S_0'(\ Mathbb {r})$上定义的通常的STFT。此STFT是有限离散的Gabor从晶格转变为整个平坦圆环的连续扩展。因此,在扁平托里上采样定理导致有限尺寸的Gabor框架。对于高斯窗户,一个导致了分析功能的空间,并且该结构可以证明是必要且充分的速率类型结果,这是一个类似的gabor框架,对于有限维度的Gabor框架,lyubarskii和seip-wallst {é} n的众所周知的结果,用于与Gabors for Gabers for and Gabres for for Gabres for for Gaber for $ n $ n $ n $ n $ n $ n $ n $ odd $ n $ odgh 框架}。相位空间的紧凑性,信号空间的有限维度和我们的采样定理在某些应用中具有实际优势。我们通过讨论当前研究兴趣的问题来说明这一点:从其嘈杂频谱图的零中恢复信号。

We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori \begin{equation*} \mathbb{T}_{N}^2=\mathbb{R}^2/(\mathbb{Z}\times N\mathbb{Z})=[0,1]\times \lbrack 0,N] \end{equation*} act as phase spaces. We work on an $N$-dimensional subspace $S_{N}$ of distributions periodic in time and frequency in the dual $S_0'(\mathbb{R})$ of the Feichtinger algebra $S_0(\mathbb{R})$ and equip it with an inner product. To construct the Hilbert space $S_{N}$ we apply a suitable double periodization operator to $S_0(\mathbb{R})$. On $S_{N}$, the STFT is applied as the usual STFT defined on $S_0'(\mathbb{R})$. This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallst{é}n for Gabor frames with Gaussian windows and which, for $N$ odd, produces an explicit \emph{full spark Gabor frame}. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源