论文标题

关于Kakutani $ C(x)$的封闭线性议法的特征 - 重新审视

On Kakutani's characterization of the closed linear sublattices of $C(X)$ -- Revisited

论文作者

Thomas, Teena

论文摘要

在他的论文中[抽象$(m)$ - 空间的具体表示。 (连续函数空间的表征。),Ann。数学,$ 42(2)$($ 1941 $),$ 994 $ - $ 1024 $。],S。Kakutani对封闭的线性议法的封闭式sublattices进行了有趣的代表,该空间是紧凑型Hausdorff空间的实用值连续功能的空间,这是由一组Algebraic关系确定的。在此简短说明中,我们提供了一个简单的证明,而无需使用任何深刻的晶格理论或功能分析结果,从而使该证明甚至可以访问本科生。

In his paper [Concrete representation of abstract $(M)$-spaces. (A characterization of the space of continuous functions.), Ann. of Math., $42 (2)$ ($1941$), $994$--$1024$.], S. Kakutani gave an interesting representation of the closed linear sublattices of the space of real-valued continuous functions on a compact Hausdorff space, which is determined by a set of algebraic relations. In this short note, we present a simple proof of this representation without using any profound lattice theory or functional analysis results, making this proof accessible even to undergraduate students.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源