论文标题
快速神经内核嵌入用于一般激活
Fast Neural Kernel Embeddings for General Activations
论文作者
论文摘要
无限的宽度极限通过建立神经网络与内核方法之间的联系来阐明深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在Relu激活上,这主要是由于其流行程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供与一般激活一起使用的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种激活函数的多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,超出了常见的经过分析的Relu激活。这是通过显示如何使用任何所需激活函数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不会受到此类限制,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀功能。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特尔网络的近似CNTK。
Infinite width limit has shed light on generalization and optimization aspects of deep learning by establishing connections between neural networks and kernel methods. Despite their importance, the utility of these kernel methods was limited in large-scale learning settings due to their (super-)quadratic runtime and memory complexities. Moreover, most prior works on neural kernels have focused on the ReLU activation, mainly due to its popularity but also due to the difficulty of computing such kernels for general activations. In this work, we overcome such difficulties by providing methods to work with general activations. First, we compile and expand the list of activation functions admitting exact dual activation expressions to compute neural kernels. When the exact computation is unknown, we present methods to effectively approximate them. We propose a fast sketching method that approximates any multi-layered Neural Network Gaussian Process (NNGP) kernel and Neural Tangent Kernel (NTK) matrices for a wide range of activation functions, going beyond the commonly analyzed ReLU activation. This is done by showing how to approximate the neural kernels using the truncated Hermite expansion of any desired activation functions. While most prior works require data points on the unit sphere, our methods do not suffer from such limitations and are applicable to any dataset of points in $\mathbb{R}^d$. Furthermore, we provide a subspace embedding for NNGP and NTK matrices with near input-sparsity runtime and near-optimal target dimension which applies to any \emph{homogeneous} dual activation functions with rapidly convergent Taylor expansion. Empirically, with respect to exact convolutional NTK (CNTK) computation, our method achieves $106\times$ speedup for approximate CNTK of a 5-layer Myrtle network on CIFAR-10 dataset.