论文标题

Peano衍生物的两个点特征

Two Pointwise Characterizations of the Peano Derivative

论文作者

Ash, J. Marshall, Catoiu, Stefan, Fejzić, Hajrudin

论文摘要

我们提供了前两个示例的订单,最高$ n $,$ n \ geq 2 $的订单的普通衍生物,其同时存在所有功能的〜$ f $ at〜$ x $等于存在$ n $ n $ th peano derivative deano derivativative $ f _ {(n)}(x)$。通过这种方式,我们开始理解如何专门用广义的Riemann衍生物来解释Peano衍生物的理论,这是一种大胆的广义分化新原则。 1936年,J。Marcinkiewicz和A. Zygmund表明,存在$ f _ {(n)}(x)$的存在与存在$ f _ {(n-1)}(x)$和$ n $ th $ n $ th th riemann derivative $ \ \ \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\图$ x,x+h,x+2h,x+2^2H,\ ldots,x+2^{n-1} h $。我们对$ f _ {(n)}(x)$的第一个表征是,它的存在等效于同时存在$ \ widetilde {d} _1f(x),\ ldots,\ widetilde {d} _nf(x)$。我们的第二个特征是,$ f _ {(n)}(x)$的存在相当于存在$ \ widetilde {d} _1f(x)$,以及所有$ n(n-1)/2 $ forthly shifts,\ [d_ {d _ {k,j,j} f(x) h^{ - k} \ sum_ {i = 0}^k(-1)^i \ binom ki f(x+(x+(k+j-i)h),\ \],\ j = 0,1,\ ldots,k-2 $,$ k $ - $ k $ -k $ -k $ - ththriemann demann demann d_ $ d_ { 第二个结果的证明涉及一种有趣的组合算法,该算法从算术进展的连续向前移动开始,并使用两种固定操作:扩张和组合高斯消除。该结果证明了Ginchev,Guerragio和Rocca的1998年猜想的一种变体,预测了向后移动而不是向前移动的相同结果。该猜想最近在[5]中解决了,证明了该变体的证明是先决条件。

We provide the first two examples of sets of generalized Riemann derivatives of orders up to $n$, $n\geq 2$, whose simultaneous existence for all functions~$f$ at~$x$ is equivalent to the existence of the $n$-th Peano derivative $f_{(n)}(x)$. In this way, we begin to understand how the theory of Peano derivatives can be explained exclusively in terms of generalized Riemann derivatives, a bold new principle in generalized differentiation. In 1936, J. Marcinkiewicz and A. Zygmund showed that the existence of $f_{(n)}(x)$ is equivalent to the existence of both $f_{(n-1)}(x)$ and the $n$th generalized Riemann derivative $\widetilde{D}_nf(x)$, based at $x,x+h,x+2h,x+2^2h,\ldots ,x+2^{n-1}h$. Our first characterization of $f_{(n)}(x)$ is that its existence is equivalent to the simultaneous existence of $\widetilde{D}_1f(x),\ldots,\widetilde{D}_nf(x)$. Our second characterization is that the existence of $f_{(n)}(x)$ is equivalent to the existence of $\widetilde{D}_1f(x)$ and of all $n(n-1)/2$ forward shifts, \[ D_{k,j}f(x)=\lim_{h\rightarrow 0} h^{-k}\sum_{i=0}^k(-1)^i\binom ki f(x+(k+j-i)h), \] for $j=0,1,\ldots,k-2$, of the $k$-th Riemann derivatives $D_{k,0}f(x)$, for $k=2,\ldots ,n$. The proof of the second result involves an interesting combinatorial algorithm that starts with consecutive forward shifts of an arithmetic progression and yields a geometric progression, using two set-operations: dilation and combinatorial Gaussian elimination. This result proves a variant of a 1998 conjecture by Ginchev, Guerragio and Rocca, predicting the same outcome for backward shifts instead of forward shifts. The conjecture has been recently settled in [5], with a proof that has this variant's proof as a prerequisite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源