论文标题

轨迹范围可见性

Trajectory Range Visibility

论文作者

Kazemi, Seyed Mohammad Hussein, Vaezi, Arash, Abam, Mohammad Ali, Ghodsi, Mohammad

论文摘要

考虑两个具有恒定但不一定相等的速度的实体,在一个简单的多边形$ p $中移动两个给定的线性轨迹。轨迹范围可见性问题涉及确定两个实体彼此可见的子区域。此问题的更直接的决策版本称为轨迹可见性,其中轨迹是线段。决策版本指定实体是否可以彼此看到。此版本由P. Eades等人研究。在2020年,他们认为该实体给予了恒定的速度。但是,本文提出的方法支持非恒定的复杂性轨迹。此外,我们报告了实体可以互相看到的每对恒定速度。特别是,对于移动实体的每个恒定速度,我们指定:$(1)$其他实体轨迹的所有可见部分。 $(2)$其他实体的所有可能的恒定速度变得可见。 关于线段轨迹,我们提出$ \ MATHCAL {O}(n \ log n)$运行时间算法,该算法获得了所有对移动实体彼此可见的子traxjectories的所有对,其中$ n $是$ p $的复杂性。关于一般情况,我们提供了$ \ Mathcal {o}(n \ log n + m(\ log m + \ log n))$运行时间的算法,其中$ m $表示这两个轨迹的复杂性。我们提供$ \ MATHCAL {O}(\ log N)$查询行段轨迹的时间和$ \ Mathcal {O}(\ log m + k)$用于非稳定复杂性的S.T. $ k $是输出中报告的速度范围的数量。有趣的是,我们的结果仅需要$ \ MATHCAL {O}(N + M)$空间用于非恒定复杂性轨迹。

Consider two entities with constant but not necessarily equal velocities, moving on two given piece-wise linear trajectories inside a simple polygon $P$. The Trajectory Range Visibility problem deals with determining the sub-trajectories on which two entities become visible to each other. A more straightforward decision version of this problem is called Trajectory Visibility, where the trajectories are line segments. The decision version specifies whether the entities can see one another. This version was studied by P. Eades et al. in 2020, where they supposed given constant velocities for the entities. However, the approach presented in this paper supports non-constant complexity trajectories. Furthermore, we report every pair of constant velocities with which the entities can see each other. In particular, for every constant velocity of a moving entity, we specify: $(1)$ All visible parts of the other entity's trajectory. $(2)$ All possible constant velocities of the other entity to become visible. Regarding line-segment trajectories, we present $\mathcal{O}(n \log n)$ running time algorithm which obtains all pairs of sub-trajectories on which the moving entities become visible to one another, where $n$ is the complexity of $P$. Regarding the general case, we provide an algorithm with $\mathcal{O}(n \log n + m(\log m + \log n))$ running time, where $m$ indicates the complexity of both trajectories. We offer $\mathcal{O}(\log n)$ query time for line segment trajectories and $\mathcal{O}(\log m + k)$ for the non-constant complexity ones s.t. $k$ is the number of velocity ranges reported in the output. Interestingly, our results require only $\mathcal{O}(n + m)$ space for non-constant complexity trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源