论文标题
局部化学环境对多质元素合金空缺扩散的影响
Effects of the local chemical environment on vacancy diffusion in multi-principal element alloys
论文作者
论文摘要
与传统材料相比,多元素元素合金(MPEAS)是令人兴奋的系统,由于它们的成分空间极大,并且在空间变化的化学环境上。但是,由于问题的大规模,预测当地化学环境的基本特性是具有挑战性的。为了研究这个基本问题,我们采用了原子模拟(使用AB-Initio和分子动力学)和卷积神经网络(CNN)的组合,以评估等摩尔Cofecrni MPEA中的点缺陷和迁移能量。我们展示了如何使用一小部分局部化学环境以合理的精度预测点缺陷的能量。使用CNN,我们开发了一个晶格蒙特卡洛模拟,该模拟计算空位的迁移路径和扩散性。值得注意的是,我们的工作说明了局部化学环境如何导致点缺陷能的分布函数,这是造成空缺的宏观扩散率的原因。特别是,我们观察到空缺被困在被大型迁移的超级盆地中,并与低迁移能量状态有关。结果,空置扩散率高度依赖于环境,并且可能会在给定温度下改变几个数量级。我们的作品说明了MPEA中理解特性的重要性,具体取决于当地的化学环境以及CNN为在高维空间中计算能量的模型提供模型的能力,该模型可用于将物品扩展到高阶模型。
Multi-principal element alloys (MPEAs) are exciting systems showing remarkable properties compared to conventional materials due to their exceedingly large compositional space and spatially varying chemical environment. However, predicting fundamental properties from the local chemical environment is challenging due to the large scale of the problem. To investigate this fundamental problem, we employ a combination of atomistic simulations (using ab-initio and molecular dynamics) and convolutional neural networks (CNNs) to evaluate point defect and migration energies in an equimolar CoFeCrNi MPEA. We show how energies of point defects can be predicted with reasonable accuracy using a small subset of local chemical environments. Using the CNNs, we develop a lattice Monte Carlo simulation that computes the migration path and diffusivities of vacancies. Remarkably, our work illustrates how the local chemical environment leads rise to a distribution function of the point defect energies, which is responsible for the macroscopic diffusivity of vacancies. In particular, we observed that vacancies get trapped in super basins surrounded by large migration and connected with low migration energy states. As a result, vacancy diffusivity is highly dependent on the environment and could change several orders of magnitude for a given temperature. Our works illustrate the importance of understanding properties in MPEAs depending on the local chemical environment and the ability of CNN to provide a model for computing energies in high-dimensional spaces, which can be used to scale things up to higher-order models.