论文标题

学会产生逼真的雷达点云

Learning to Generate Realistic LiDAR Point Clouds

论文作者

Zyrianov, Vlas, Zhu, Xiyue, Wang, Shenlong

论文摘要

我们提出了Lidargen,这是一种新型,有效且可控制的生成模型,可产生逼真的LIDAR点云感觉读数。我们的方法利用强大的得分匹配基于能量的模型,并将点云生成过程作为随机降解过程,在等应角视图中。该模型使我们能够采样具有保证的物理可行性和可控性的多样化和高质量点云样本。我们验证方法对挑战性Kitti-360和Nuscenes数据集的有效性。定量和定性结果表明,与其他生成模型相比,我们的方法产生的样本更现实。此外,Lidargen可以在无需重新培训的情况下在输入的条件下采样点云。我们证明我们所提出的生成模型可直接用于致密性激光点云。我们的代码可在以下网址找到:https://www.zyrianov.org/lidargen/

We present LiDARGen, a novel, effective, and controllable generative model that produces realistic LiDAR point cloud sensory readings. Our method leverages the powerful score-matching energy-based model and formulates the point cloud generation process as a stochastic denoising process in the equirectangular view. This model allows us to sample diverse and high-quality point cloud samples with guaranteed physical feasibility and controllability. We validate the effectiveness of our method on the challenging KITTI-360 and NuScenes datasets. The quantitative and qualitative results show that our approach produces more realistic samples than other generative models. Furthermore, LiDARGen can sample point clouds conditioned on inputs without retraining. We demonstrate that our proposed generative model could be directly used to densify LiDAR point clouds. Our code is available at: https://www.zyrianov.org/lidargen/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源