论文标题

用于超低音频处理设备的硬件加速器和神经网络合作

Hardware Accelerator and Neural Network Co-Optimization for Ultra-Low-Power Audio Processing Devices

论文作者

Gerum, Christoph, Frischknecht, Adrian, Hald, Tobias, Bernardo, Paul Palomero, Lübeck, Konstantin, Bringmann, Oliver

论文摘要

人工神经网络的扩展不断增加,在超功率边缘设备上不会停止。但是,这些通常通常具有较高的计算需求,并且需要专门的硬件加速器,以确保设计达到功率和性能限制。神经网络的手动优化以及相应的硬件加速器可能非常具有挑战性。本文介绍了Hannah(硬件加速器和神经网络搜索),这是一个针对深神经网络和硬件加速器的自动化和组合的硬件/软件共同设计的框架,用于资源和功率受限的边缘设备。优化方法使用基于进化的搜索算法,一种神经网络模板技术,以及可配置的可配置超拖网硬件加速器模板的分析KPI模型,以找到优化的神经网络和加速器配置。我们证明,汉娜(Hannah)可以找到适合不同音频分类任务的功耗和高精度的合适神经网络,例如单级唤醒单词检测,多级关键字检测和语音活动检测,这比相关工作优于相关工作。

The increasing spread of artificial neural networks does not stop at ultralow-power edge devices. However, these very often have high computational demand and require specialized hardware accelerators to ensure the design meets power and performance constraints. The manual optimization of neural networks along with the corresponding hardware accelerators can be very challenging. This paper presents HANNAH (Hardware Accelerator and Neural Network seArcH), a framework for automated and combined hardware/software co-design of deep neural networks and hardware accelerators for resource and power-constrained edge devices. The optimization approach uses an evolution-based search algorithm, a neural network template technique, and analytical KPI models for the configurable UltraTrail hardware accelerator template to find an optimized neural network and accelerator configuration. We demonstrate that HANNAH can find suitable neural networks with minimized power consumption and high accuracy for different audio classification tasks such as single-class wake word detection, multi-class keyword detection, and voice activity detection, which are superior to the related work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源